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The two state coupling problem in wave mechanics is solved in discretized form using the 
sign changes in the Sturm sequence of the Hamiltonian &determinant. The numerical 
algorithm is simple and fast; precision and accuracy can be separately controlled. The method 
is applied to the vibronic coupling problem in a diatomic (two closed channels) and the 
evolution of the adiabatic vibronic levels from the uncoupled (diabatic) states is demonstrated 
as a function of the strength of coupling. The method can be used for any symmetric pen- 
tadiagonal band matrix eigenvalue problem. 0 1987 Academic Press, Inc. 

The higher vibronic levels of molecules are generally embedded in a manifold of 
levels belonging to neighbouring states. Symmetry permitting, these electronic states 
are coupled (e.g., by the spin orbit operator) and the wave equation is no longer 
strictly separable into vibrational and electronic factors. The problem is already 
present in diatomic and leads, for instance, to the mixing of Rydberg with ion pair 
states and to predissociation. 

The simplest and most common problem is that of two interacting electronic 
states. Writing the complete vibronic wave function thus, 

y n =ww dh(X)+- W(r) #zn(x) 2 (1) 

where t+bf)(r) and t,!@)(r) are the electronic eigenfunctions of the unmixed (i.e., 
diabatic) states (r is a collective electronic coordinate), the vibrational wave 
functions din and &, satisfy the standard coupled wave equations 

C( -fi2/%L) d2/dx2 + YH (xl - KJ 418 (x1= vi, (x)hn (x) 

CFfi2/2,4d2/dx2+ ~22(~)-&142nb)= vzl(x)hz(x), 
(2) 

where V,, (x), V,,(x) are the diabatic potential energy functions for the nuclear 
motion and where V,, is the coupling matrix element in the diabatic basis. The 
alternative formulation of the coupling problem in the adiabatic basis leads to the 
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VIBRONIC COUPLING PROBLEM 219 

operator d/dx appearing on the right-hand side of (2). The eigenvalues of these 
coupled equations can also be found by the method to be resented ad the 
algorithm is given in Appendix C. 

Equations (2) (or those in the adiabatic basis) have hitherto been solve 
numerically either by expanding the di in soma appropriate set of basis functions 
and diagonalising the resultant H matrix, or by employing a finite difference 
stepwise integration procedure. Our method is also a finite difference one, although 
integration is not used. 

If the eigenfunctions are tabulated at N equally spaced intervals 4 = (Xi- xi- ,) 
and d2/dx2 replaced by the second central difference 6, ~1 at each tabulation position: 
we obtain 2N simultaneous equations 

ASP”‘- 2p 5*/~‘(v,,(xi) - a1 41 (Xi) = 21.1E’l~2~12h~ f#LCxJ 
[Sj”’ - 2~ t2,h2( V,,(x,) - E)lh(-Q = 2~.5*/~~J”/‘,, hil 41 (xi)> 

(3) 

wbere the correction term 0(<4$i”) has been omitted. Introducing the reduced 
functions 

WY’ = 2pl9/tF I/,,, (xi); I” = 2p(%/h2 (4) 

the problem is reduced to finding the eigenvalues ,I, of a ~ami~tonia~ matrix whose 
structure is much simpler than that encountered in a functional expansion, thoug 
its dimension is considerably larger. 

For the uncoupled one channel problem ( VI2 =O) this leads [I, 21 to a 
tridiagonal Hamiltonian matrix 

w,+2-R -1 0 .. 0 
-1 w,+2-n -1 0 
0 -1 w,+2-n -1 

(51 

-I 
0 -1 w,+2-1” 

and for the coupled equations (3) the discretized Hamiltonian 
tadiagonal 

w;+2-Al wp i-1; 0 ’ 0 
_---- J I 

W:” Wyf2-A ! 0 / -1 . . 
------------ i 

-1 0 wy+2--i,l 12 
2 -1 

_---- ------ ---- 

0 -I W;2 q2+2-/? 0 ’ 

Wg 

0 -1 
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Note that the eigenvector consists of alternate contributions from the two parts of 
the composite wave function. It is the purpose of this paper to show that the roots 
of (6) can be found rapidly from a Sturm sequence. Currently used stepwise 
integration procedures [3,4] start from the Numerov formulation in which the 
correction term O({“) is replaced by one O(t6@). Forward and backward 
integration is then used starting from orthogonal boundary conditions (5) followed 
by a matching procedure to ensure continuity of the two solution vectors. The 
Numerov procedure can be incorporated into the matrix from (6), resulting in a 
7-diagonal matrix. Partly because of the increased width of the diagonal band, but 
also because of the danger of poor behaviour of the Numerov procedure in 
problems involving tunnelling, we have retained the simpler second difference for- 
mulation. The price paid is, of course, that root convergence is now only quadratic 
in the step length as opposed to the l” convergence achieved by Numerov based 
methods. However, we contend that the speed and stability of the method make 
extrapolation very fast if the highest accuracy is required. 

A further advantage of retaining the form (6) is that minimal changed are 
required if the coupling operator is switched to djdx. Under those conditions the 
Numerov procedure would not be applicable. 

2. THE NUMERICAL ALGORITHM 

Bisecting the A-determinant is the preferred method [S] for finding the roots of a 
tridiagonal matrix and we now show that the method can be applied to a pen- 
tadiagonal matrix. Essentially, a trial value of root is selected and the number, n, of 
sign changes in the Sturm sequence of principal minor determinants of increasing 
order down the leading diagonal is counted. The fact that this sequence forms a 
Sturm sequence if the complete determinant is symmetric is proved in Ref. [6]. 
These minor determinants, d(j) are delined by the dotted lines in the matrix (6). The 
number of eigenvalues with energy < 2 is then equal to n. A moment’s con- 
sideration shows that all that is required is the number of negative values in the 
sequence of the ratios of successive minors, and this is the basis of the standard 
bisection algorithm for tridiagonal matrices, in which successive trial values of the 
Kth root are the arithmetic average of the previous upper and lower limits to E,. 

Consider the pentadiagonal determinant 

AN(A) = 

d,-i e2 f3 0 0 . 

e2 dz - /I e3 h 0 . 
f3 e3 4-A ~4 fs . 
0 

O...f, eN . fN eN d-2. 

(7) 
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where the non-standard notation for matrix elements has been used 
rna~i~~lat~~g the determinant, the various entries will be draws from linear arr~~§ 
{dj, (e), etc., rather than from a square matrix. 

The sequence of minor determinants of increasing order, d w starting at the upper 
left entry is 

A(O)= 1 ~“‘Zd,-~ 7 A(*)= (d,-;l)(d2-j”$-e:,.... (S) 

Let the minor of (i), obtained by deleting the nth row and n?th column A;; (so 

A~~)=A”‘-‘I). We equire the number of sign changes of A(‘) in passing fr i=J to 
Iv as counted by negative values of the ratio A(‘)/A(“- ‘). For t is we generate the 
following recursive sequence from the elementary properties of dete~~~a~ts~ 

and it is upon this sequence that the present algorithm is based. The app~~cati~~ of 
the method to the matrix (6) is speeded up by the alternate zeros in (e> and the 
actual algorithms given in appendix (1). For comparison, the seque 
trigiagonal matrix is of only two steps: (f bands smutted), 

Typically, for the lower lying vibrational levels (v < 50) N between 800 and %2OO 
gives eigenvalues to 1 part in lo4 or better. This value of N represents a 
of between 0.002 and 0.001 A, and in order to maintain this 

length 
stepleng r high 

vibrational levels of correspondingly large amplitude of vibration, N may have to 
be increased to perhaps 5000. A key parameter from the computational point of 
view is the precision q to which roots are found. The number of passes t~ro~~~ the 
sequence that is needed increases as -In q. Bisection becomes ine~cie~t if the 
highest accuracy is required and Newton Raphson interpolation on the fui 
minant ACN’(,I) should then be used (see Appendix A). Naturally, Q must be 
value less than the smallest separation between roots. True degeneracy, as o 
to accidental, can be handled by transforming to a symmetry adapted coo 
basis. It can readily be shown that, if there is n-fold degeneracy of a given root, the 
last IZ principal minors, dCN’(,4),..., d(N--n+l)(L) are zero. 

We emphasise that the sequence of minors d(l), 4(‘),.~., A(“‘) does not constitute a 
wave function. Although the resemblance is quite close in the tridiagonal (single 
channel) case, the A(‘) do not satisfy the finite difference equations (3). Bf eigenvec- 
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tors are required (and almost any problem in wave mechanics can be formulated in 
terms of eigenvalues rather than eigenfunctions) they are produced by one or two 
cycles of back substitution just as in the single channel case. 

4. CONVERGENCE WITH DECREASING STEP LENGTH, 5 

To achieve the highest accuracy, extrapolation to 5 =0 must be used, and we 
now illustrate the strict quadratic dependence of A,(<). Yll (x) and V,,(x) are 
assumed parabolic and the coupling is exponential 

V,,(x), w~)=k(~~1.5fw2; V,,(x)= V,,exp(-(x-1.5)/10). (11) 

The parameter values used were; ,LL = 40 amu, k =40,000 cm-l A2, 6 =0.5 A, 
V,,= lo3 cm-’ (leading to a crossing of V,, and Vz2 at 5000cm-‘, where 
V,, = 1000 cm-‘.) The potentials are sketched in Fig. 1. The interval for x was 
generally [O, 31 (see note following Table I) and eigenvalues changed by less than 
5 x 10m4 cm-’ on expanding this interval. The behaviour of three energy levels as a 
function of 5 was followed (Table I); n = 56 corresponds to a level just at the 
position of the original avoided crossing, II = 46 is at the energy of the maximum in 

FIG. 1. The two uncoupled parabolic potentials crossing at V,, are shown schematically on the left 
and the strongly coupled (adiabatic) states on the right, The strength of coupling, VIZ, increases from 
left to right. The locus of the minimum of the upper adiabatic state (that would be obtained by solving 
the 2 state electronic problem at a given separation) is the linearly rising dashed line, VI2 + V,. The 
locus of the barrier maximum in the lower state, which becomes the true minimum when V,, > V,, is the 
lower dashed line V, - V,,. In the limit of strong coupling, the wells again become parabolic though the 
equally spaced energy levels are subject to local perturbations. 
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TABLE I 

The Convergence wth Step Length 5 of Three Eigenvalues 
in the Coupled State Problem 

s’ * lO”/A 

4 4958.280 4019.391 2584.144 
5 4958.094 4019.281 2584.092 
6 4967.866 4019.147 2584.032 
8 4967.288 4018.808 2583.893 

10 4966.544 4018.371 2583.709 
12 4965.634 4017.837 2583.485 
15 4963.958 4016.854 2583.067 
20 4960.337 4014.728 2582.167 
25 4955.678 4011.992 2583.014 
30 4949.978 4008.645 2579.602 

&,/cm r &/cm ’ Ezg /cm - l 

a0 4958.605 4019.581 2584.222 
Ql 1.318(-+1) 9.173 -4.5871-I) 
a2 -2.074(+6) -1.218.(1-6) -5X2(+5) 
0 1.6( -3) 1.08(-3) 2.4(-3) 

Note. The coefbcients of the least squares fit E, = a, + alt + a2e2 are given below each q~a~t~~ 
state, together with the standard deviation, (r, of the tit. The end points of the tabulation were xi =O, 
xN = NINT(3/5). Thus, for i; = 4 x 10-4, 7501 grid points were taken in the interval [O, 31. For those 
values of < not giving an integral number of steps in this interval, the minimum necessary extension to 
xN was always < 10e3 A. 

the new adiabatic potential and n = 29 is well below the barrier. The levels wit 
EC 4000 cm-r are doubled due to tunneling and the splitting E,, -I&, is 
9.85 cm-l. The quadratic convergence is clearly indicated by the least squares fit 
I& (5) = a, + a, 5 + a2 t*, where a2 is 5-7 orders of magnitude greater than a1 ~ The 
increase in a2 with E, is simply due to the shortening wavelength of the vibrational 
motion. For an uncoupled harmonic oscillator the dependence of a2 on E, should 
strictly quadratic, and this is rougly the behaviour displayed in a more extensive 
survey of coupled systems. 

5. A MODEL VIBRONIC COUPLING PROBLEIVI 

We take the system of coupled states discussed above, but now with the fo~~ow~~~ 
parameter values: k = 20,000 cm-’ A-*, 6 = 0.1 A, p12 = 20 amu, V,,(X) = V,,. The 
constant coupling potential is introduced so that the reflection symmetry, x t--p I - x 
can be used to unravel the correlation diagram. Whether Y,,(x) is constant or not 
makes no difference to the speed of bisection, nor does the functional form of 
V,, (x) and V,,(x) though strongly anharmonic potentials would considerably slow 
up the solution in terms of a harmonic oscillator basis. 
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Taking this model, our aim is to follow the correlation diagram of, say, the first 
20 eigenstates as a function of the strength of coupling VI,. The solution of the little 
2 x 2 electronic state coupling problem with constant VI2 indicates that for large 
V,, (so that the lower adiabatic potential has only a single minimum) the adiabatic 
eigenstates are again approximately quadratic in the displacement from equilibrium 
(see Fig. 1) and in these new potentials the two natural frequencies for molecular 
oscillation are 

of’2)= {k(l +2k62/V,,)p--‘}1’2. (12) 

Thus, as VI2 increases, the average of the vibrational level spacing ( 1/2(wi”) + o$O)) 
in the two new vibronic manifolds should slowly approach the original spacing in 
the uncoupled problem. For the parameter values given above, we find for the 
uncoupled case o” = 259.3 cm -I. 

The calculations were performed with N= 800 and 1200 and the results 
extrapolated to 5 = 0. The uncoupled extrapolated zero point energy agrees with the 
exact value to 1 part in 106. A portion of the complete correlation diagram is shown 
in Fig. 2. Calculations were performed with N = 1200 (5 = 0.001) and, by com- 
parison with extrapolated values, results are accurate to 1 part in lo4 over the 
whole diagram. The precision parameter was set to 0.1 cm-’ at the bisection stage, 
followed by one Newton Raphson interpolation in LI’~‘(E). 

-I 2oool 

w50;p$T* 

50 100 200 300 400 500 600 
FIG. 2. The correlation diagram of the first 16 energy levels for the potentials and coupling term 

defined in Section 5 and qualitatively shown in Fig. 1, but with a lower barrier (V, = 200 cm-‘) lying 
between the u = 0 and u = 1 doublets. The small splitting at the left is characteristic of the slightly pertur- 
bed diabatic states, followed by an intermediate coupling region. At the right, two sets of nearly 
adiabatic vibronic levels have energed. Those falling with increasing V,, are associated with the lower 
adiabatic electronic state and the rising curves belong to the upper adiabatic state. The dashed lines are 
the loci of the minima of the two adiabatic states as in Fig. 1. The starred states correspond to the zero 
point motion of Fig. 1. 
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The correlation diagram is displayed in Fig. 2. It shows clearly t 
the vibronic levels characteristic of the two adiabatic states from 
ones ( VI2 = 0). Thus starting from the left, the first three do 
first six levels of the lower adiabatic state. Then in the higher 
evolves into a level of the upper adiabatic state and its 
lower state adiabatic state. 

Several avoided and unavoided crossings are visible. 
metry classification, we take as the symmetry operat 
effect of transforming V,, into V,, (and leaving VI 
operator to the coupled wave equation (2) leads to the requirement 

and these two possibilities must be called g and u. Somewhat perversely, this leads 
to the lowest vibrational state of the upper adiabatic electronic state being classified 
U. The explanation is simply that this electronic state is itself odd with respect to 
interchange of the nuclear positions (it is an anti-symmetric combination @I - $* of 

iabatic states). Note also the reversal 
he energy increases. For the third pa 

almsst zero until V,, - 250 cm-’ (and passes throu 
reason is that the ist order perturbed energy splitting, given by 

can be either positive or negative depending on the phase of the 
vibrational functions #$ and 4 5:) in the overlap region. At p2 = 3 the 
almost zero and for the next few pairs of levels the II state lies lower un 
reversal occurs. 

diabatic picture is not established until the coupling is rougly twice 
atie state vibrational spacing (or twice the larger of or”” and o$‘J if t 

potential wells have different force constants). In terms o 
parameter y = V,,/hu (O) introduced by Dressler [?I, the stro 
begins when y k 2. 

5. CoNCLusIoNs 

s of numerically evaluating the urm sequence to find the roots of a 
matrix can be adapted to the pent iagonal case. All two state coupling 
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eigenvalue problems can then be solved by this technique which, we suggest, should 
be the preferred one for this class of problem. In particular, we have illustrated its 
use in a vibronic coupling problem in a diabatic basis up to the 56th level and the 
method works equally well for bands of high or low rovibrational levels. 
Extrapolation with respect to the grid spacing (0 is smooth. Judging from the 
model calculations presented, the behaviour of the I-determinant Sturm sequence in 
the single channel double minimum potential problem, tunnelling through 
classically forbidden regions offers no difficulty. 

The disadvantages of the determinantal method are: (1) convergence with respect 
to 5 is quadratic compared with t4 in Numerov based methods; (2) although the 
basic algorithms are simple to write down for 11 coupled equations, the number of 
recursive steps increases as 2”. We have successfully used the method for yt = 3, but 
four coupled states may be the practicable limit. 

The advantages are: (I) the transparency of the method; (2) its speed, arising 
from the simplicity of the algorithm and the fact that the matching procedure in the 
integration methods is avoided; (3) its stability in barrier penetration problems. 

APPENDIX A 

The particular structure of the discretized Hamiltonian matrix for the two state 
coupling problem (Eq. (2)) is, in reduced form (assuming &j) and dh2) to be zero), 

-al-l Yl -1 . . . 0 

Yl pl-n 0 -1 

-1 0 a,-1 y2 -1 . 
0 -1 y2 p2-/z 0 -1 . 

0 0 -1 0 a,-1 y3 . 

-0 . ’ -1 yN PI?J-1 

, (AlI 

where ai is the value of the lower state diabatic Hamiltonian (in reduced units) 
evaluated at the ith mesh point, pi the corresponding value in the upper state and yi 
the reduced value of the coupling function V,, at xi, 

ai= (2/Lt2/fZ2) VI, (Xi) + 2 

Yi = c&4Lr2P2) VI2 (Xi) 

/z = 2pt2E/fi2. 

(42) 

There are two sorts of minor determinant of increasing order down the principal 
diagonal: those terminating in ai- II and in ai- 1. (The order of the latter will 
necessarily be one greater than that of the former). We denote these two minors by 
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C2) and Ac3) are outlined in (Al)j. Then, with the aid of two further 

following recursion relations for the sequence (9), with A(‘). . . A:‘), 
BCN) constituting a Sturm sequence, 

A(‘)=(OIi--)B(“-‘)-(Bi-1-/2) 

B(i)=(p.-a)A(‘)-y.G ffp” I , (9 

G”+B - +@-1) I (i 1) 

ff(‘) = B(‘-‘)-yiG(i-‘)- (ui-/2) A(‘-“), 

The sign changes in the Sturm sequence are then counted by the number of 
negative values of the successive ratios A(‘)/@- ‘) and &‘)/A(‘) in scanning i from P 
to N. The actual algorithm uses the auxiliary ratios 

S1 i = $‘)/A(‘) 

S& = A(‘)/B(‘- 1) 

S3i=p'/#-"' iA51 
s4,= @)/A(') 

s5i= fp/‘.‘p 

and their reciprocals RN,= l/,SN,, etc. The recursive sequence for ratios is then, in 
order of execution, 

S2i=(oli-I)-((Bi~1-a)*R2,-,- 

R3i=Rli-,*R2, 

§4j=yi*R2i+S4,-I *R3, 

S5i=(R2,_,-yi*S4i_,-(oli-~B)*R3i 

Sli=(p,-/1)-yj*S4,+S5i 

and the initial values are 

s4, =yl/(ol, - a). 

5z1:70:1-15 
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If the Lth root is required, the value of/z is refined by bisection between successively 
closer values, 2, and A, that give L and L - 1 sign changes respectively in the 
Sturm sequence. The process is stopped when 1, and 1, differ by less than a preset 
limit 4. 

This bisection can be the most inefficient part of the whole scheme. The more 
efficient Newton Raphson (NR) interpolation cannot be used on the nearly discon- 
tinuous ratio function S,(n), but we have found that the NR procedure works well 
on the determinant B’j”‘(/Z) itself. (dCN’ in the notation of Section 2). At first sight 
this is a rather hazardous procedure because the full determinant (unless I is very 
close to a root) will typically have a magnitude in excess of 1034. However, we have 
found good linear behaviour in the vicinity of a root once AL has been located to 
roughly 10m3 of the adjacent root separation. In order to avoid possible real over- 
flow in evaluating BCN), the starting values for the Sturm sequence (A4) (i.e., A(‘), 
L?(l) G(r) and B(O) (= 1) are all scaled by lo-” before the sequence is generated 
in the usual way. The sequence itself should not begin too far inside the classical 
turning point. 

To summarise, then. A root is located with a precision 10e31, by bisection. This 
might take 5 to 6 passes through the Sturm sequence. An NR search for the zero of 
B”“)(l) is then made in the interval (A-C, 2 > ). This will take 2, or just possibly 3 
passes through the slightly faster Sturm sequence (A4) to achieve a precision of 
lo--’ or better in 2,. 

APPENDIX B 

We show that the single channel eigenvalue problem with the second order dif- 
ferential operator correct to 0(14) gives rise to a pentadiagonal A-matrix. 

The central difference formula for d2q5/dx2 to O(5”) is 

ml!r=&2 (-$i-z+ l$b-l-304i+ 16~i+~-di+~)+~m(li! WI 

Provided both &, and do are zero (the boundary condition appropriate to the 
regular solution in a classically forbidden region), the 
sional wave equation then becomes, in discretized form, 

si ngle channel one-dimen- 

x,-R 16 -1 0 . o- 
16 a,-1 16 -10 . 
-1 16 a,-,4 16 -1 . 
0 

0 . ’ -1 16 a,-A 

= 0, O-42) 

where 

cli = (2@2) (“Vi - 30, a = 2#E/?F. 



VIBRONIC COUPLING PRQBLEM 229 

T amiltonian h-matrix is thus pentadiagonal, with constant off-diagonal entries. 
Finding the eigenvalues thus involves the same type of Sturm sequence as discussed 
in Appendix A, but is quicker to execute. We have only one type of principal 
A(‘) ( z A”‘), a n d two further minors G = d (‘1 2 I z,,--l and pd,= Aj:)-,, 

Gi= 16Ai_,+Gi-1 

and the recursion is started by A _ 1 = 0, A0 = 1, A 1 = a, - i+, 6, = 0. The Numerov 
recursion formula is rather simpler 

I- (l/12) p(cq+, - I”) 

The discretized wave function 4,. (in the single channel one-dimensional case oniy) 
forms a Sturm sequence, so we can find eigenvalues by bisection in the sequence 

from the number of negative values of 

(2$(10/12)52(a,-~))+R,(1-(~/~2)52(~i-~-~-)) ( 
I- (W2) r’2(4 + I - 11 

(where R, = 2/S,). This might seem preferable to the slightly longer sequence ( 
For potentials with a single minimum, the two methods are completely concord 
with the Numerov technique (B.5) yielding the higher accuracy because of 
smaller remainder term J- {4d(“iJ. 240 However, for double minimum problems inv~fv- 
ing states below the top of the potential barrier (e.g., inversion doublet splitting) the 
Numerov method is unstable in the classically forbidden regions. This re 
inability to resolve nearly degenerate levels. We have used the sequence 
the simpler tridiagonal one based on 6 (‘) alone) with complete success in many 
internal rotation and inversion problems with splittings down to IV3 cm- I, 

APPENDIX C 

The vibronic two state coupling problem in an adiabatic basis is often reduced to 
the coupled equations (see, e.g., Ref.[8]), 

t-W/W &dx2 + v,,(x) - El &x(x> = T,,(x) 4Wx 

(-(ri2/2p)d2/dx2+ V,,(X)--)&(X)= -T,,(x)dbl,ldx. 
(6311 



230 K. P. LAWLEY 

If the second order central difference operator is substituted for d2/dx2 and if the 
coupling amplitude function R,,(x) is constant, we have 

a,-;1 y -1 0. 0-J SC,‘) 
p 

312 
4’) 

c 

Y 
-1 
0 

0 

p1-y -y -1 . * 

--Y q-n y -1 . 

. . 
-1 Y DNLfJ : J 

= 0, (C2) 

where 

ai= (2y/h2) t2V1, (Xi) + 2 

Pi= (2P/fi2) t2v22(xi) + 2 

Y = %U121fi2. 

Note that the second part of the vibrational wave function, #I$,, is tabulated at 
points midway between the adjacent #(‘) values, 4{‘) and #Iyi. This allows the more 
accurate central difference formula (with error - & ~2&“). 

to be used for the first order differential operator. 
The Sturm sequence is principal minors of the I-determinant from (C2) is 

developed from Eq. (9) and root finding proceeds as described in Appendix A, 
beginning with bisection. 

In practice (see, for e.g., [9]), T12(x) may be a rather sharply varying function of 
the vibrational coordinate near an avoided crossing and the tabular positions of yi 
have to be decided. The Hermitian nature of H must be retained and it turns out 
that the correct positioning of (y ) is midway between xi and xi + l/2, 

Y1/4, Y3/4”’ Yi- 1/4Yi+ l/4 ” ’ YN+ l/4’ 

We are investigating the accuracy and stability of the Sturm sequence method for 
this problem. 
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